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ABSTRACT

The extensive use of atrazine to control weeds in agricultural areas has contaminated
atrazine in surface water and groundwater. Atrazine contamination in water resources causes
human health concerns. Thus, this study investigated the possible use of aquatic plants
for removing atrazine from contaminated water. The experiment was performed under
plant nursery conditions and divided into two parts: (1) the atrazine-tolerant plants were
screened, and (2) the most atrazine-tolerant plant was used for atrazine phytoremediation
stimulated by plant growth regulators. The results showed that atrazine was toxic to all
aquatic plants, as the dry weight of the plants was significantly decreased when exposed
to 20 mg/L of atrazine (P<0.05). Based on five aquatic plants grown under 2.5-20 mg/L
atrazine-contaminated water, Azolla microphylla Kaulf. was the most tolerant aquatic plant
and was more suitable for use in atrazine phytoremediation than the other aquatic plants
(Ceratophyllum demersum L., Eichhornia crassipes (Mart.) Solms, Hydrilla verticillata
(L. £.) Royle, and Salvinia cucullata Roxb. ex Bory). The total chlorophyll, carotenoid,
and proline contents in the biomass of 4. microphylla cultured in 2.5-20 mg/L of atrazine
did not significantly differ between the atrazine concentrations (P>0.05). Meanwhile,
the proline contents in the other four aquatic plants increased with increasing atrazine
concentrations, and the chlorophyll content significantly decreased with an increase in

the atrazine concentration. However, 4.
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day five of 4. microphylla cultivation
compared to the initial concentration (25
mg/L). Using a plant growth regulator
was ineffective for stimulating growth and
atrazine removal by A. microphylla. Future
research should explore other potential
mechanisms for enhancing atrazine removal
by 4. microphylla.

Keywords: Atrazine, Azolla, herbicide,

phytoremediation, plant growth regulator

INTRODUCTION

Atrazine is a widely used herbicide to
control broadleaf weeds and annual grasses
in field crops, such as corn and sugarcane
(Steffens et al., 2022). Global use of atrazine
is around 70,000-90,000 tons annually
(H. He et al., 2019). In Thailand, atrazine
is one of the top five imported herbicides
(Aungudornpukdee, 2019) because it is
inexpensive and efficiently controls weeds
(H. He et al., 2019). The amount of atrazine
used in sugarcane fields was 480-640 g/m?
in Thailand (Ratchawang et al., 2022). The
extensive use of atrazine for a long time and
its chemical structure’s stability makes it a
ubiquitous contaminant in the environment
(H. Heetal., 2019; Ratchawang et al., 2022).
Contamination by atrazine has been reported
in surface water, sediment, and soil in many
countries, including Thailand (Phewnil et
al., 2012), China (Sun et al., 2017), and
Iran (Almasi et al., 2020). For example,
the average concentrations of atrazine in
the topsoil and subsoil in the Huay Kapo
Watershed, Nam Nao District, Phetchabun

Province, Thailand, were 133.59 and 183.23
ug/kg, respectively (Phewnil et al., 2010).
The contaminations of atrazine in the water
and sediment in the agricultural catchment at
Nong Bua reservoir, Wiang Sa District, Nan
Province, Thailand, were 0.00016 ug/L and
0.00023 pg/kg, respectively (Thitiphuree
et al., 2013). The mean concentration of
atrazine in agricultural soils around the
Yangtze River Delta, China, was 5.7 ug/
kg (Sun et al., 2017). The concentration
of atrazine in the water of the Shadegan
wetland, Iran, ranged between 0 and 2,175.8
ug/L (Almasi et al., 2020). Atrazine applied
to the soil leaches into water reservoirs
(Rostami et al., 2021), and contamination by
atrazine in water resources increases the risk
of atrazine in drinking water. According to
the United States Environmental Protection
Agency and the European Community
guidelines, the maximum concentration of
atrazine in drinking water should not surpass
3.0 and 0.1 pg/L, respectively (H. He et al.,
2019; Marecik et al., 2012). Using atrazine-
contaminated water as a source of human
drinking water is a public health concern
because atrazine is an endocrine disruptor
(Rostami et al., 2021; Steffens et al., 2022),
and long-term human exposure to atrazine
causes damage to the endocrine system (H.
He et al., 2019). Moreover, preterm birth
was reported in people who have consumed
atrazine-contaminated water (Almberg et
al., 2018).

Phytoremediation uses plants to
decontaminate organic and inorganic
pollutants from contaminated sites (Rostami
et al., 2021). Phytoremediation of atrazine
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by aquatic plants is interesting as a means
to remove atrazine from contaminated
water (Marecik et al., 2012). The possible
mechanisms for the plant to decontaminate
atrazine from the polluted water are
phytodegradation: the organic contaminant
degradation in plant tissue by plant enzymes,
rhizodegradation: the exudation of root
exudates from plant roots to stimulate the
organic contaminant degradation around
the root zone, and phytoaccumulation: the
accumulation of organic contaminants into
plant biomass (Ansari et al., 2020; Kooh
et al., 2018; Q. Wang et al., 2012). Several
plant species have been reported to remove
atrazine from contaminated water, including
sweet flag (Acorus talamus L.) (Marecik
et al., 2012), Iris pseudacorus L., Lythrum
salicaria L., and Acorus calamus L. (Q.
Wang et al., 2012). Suitable characteristics
for plants used in phytoremediation are
high biomass, rapid growth under several
environmental conditions, and tolerance
to toxic contaminants (Sood et al., 2012).
However, the sensitivity of aquatic plants to
atrazine contamination is a limiting factor
in the success of phytoremediation. The
toxicity of atrazine has been reported in
several aquatic plants, including broadleaf
cattail (Typha latifolia L.) and narrow-leaf
cattail (Typha angustifolia L.) (Marecik et al.,
2012). Atrazine may inhibit photosynthesis
and chlorosis and reduce plant biomass as
a response of the plants to the toxicity of
atrazine (Rostami et al., 2021; Sanchez et
al., 2017).

Using an exogenous plant growth
regulator is one way to reduce the toxic

effects of contaminants on plants, and
they can promote the growth of plants
under abiotic stress conditions (Rahman
et al., 2023; Y. He et al., 2022). Many
plant growth regulators, including indole
butyric acid, gibberellin, salicylic acid,
and 6-benzyladenine, have been used to
mitigate the toxic effects of abiotic stress
on plants, including heavy metal stress
(Rostami et al., 2021), drought stress (Li
et al., 2018), and waterlogging stress (J.
Wang et al., 2021). Probable mechanisms
for plant growth regulators to alleviate
toxic effects in plants grown under abiotic
stress involve mediating the antioxidant
defense systems and eliminating reactive
oxygen species (Emamverdian et al., 2020;
J. Wang et al., 2021; Li et al., 2018). For
example, indole-3-butyric acid promotes the
growth of adventitious roots by controlling
antioxidant defense systems in mung bean
(Vigna radiata (L.) Wilczek) for seedlings
grown under cadmium and drought stresses
(Li et al., 2018). Gibberellin relieved the
toxicity of arsenic in rice (Oryza sativa
L.) seedlings by reducing the arsenic
accumulation in the root (Y. He et al.,
2022). Salicylic acid also increases the
tolerance of plants grown under heavy
metal stress by stimulating antioxidant
enzyme synthesis (Emamverdian et al.,
2020). Reducing ethylene formation by
salicylic acid application has been reported
in rice grown under arsenic contamination
(Khan et al., 2013, 2021). Exogenous
6-benzyladenine helped improve Zea mays
L. tolerance to water logging by mitigating
the reactive oxygen species produced under
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waterlogging stress (J. Wang et al., 2021).
However, no reports have investigated the
effects of plant growth regulators on aquatic
plant growth and the removal of atrazine
under atrazine stress. Even though plant
growth regulators may improve the growth
of plants under atrazine stress to a similar
trend as abiotic stress, described above, this
study was performed to select the atrazine
tolerant plants from five aquatic plant species
(4. microphylla, C. demersum, E. crassipes,
H. verticillata, and S. cucullata) because it
is the first step of phytoremediation process.
Then, the effect of exogenous plant growth
regulators (indole butyric acid, gibberellic
acid, salicylic acid, and 6-benzyladenine)
on plant growth and atrazine remediation
by the most tolerant aquatic plants was also
determined.

MATERIALS AND METHODS

Preparation of Atrazine-contaminated
Water

The atrazine (6-chloro-N2-ethyl-N4-
isopropyl-1,3,5-triazine-2,4-diamine 80%
w/w) was purchased from an agrochemical
shop under the trade name Weethong
(V. C. S. Agro Chem Company Limited,
Thailand). The atrazine-contaminated
water used in the phytotoxicity testing
experiment was prepared by dissolving
atrazine powder in tap water to give final
concentrations of 0, 2.5, 5, 10, and 20
mg/L concentrations. The concentration of
atrazine in the phytoremediation experiment
was prepared as described previously to give
a final 25 mg/L concentration.

Plant Preparation

The aquatic plants, C. demersum, E.
crassipes, H. verticillate, and S. cucullate
were purchased from a plant shop in Maha
Sarakham Province, Thailand, and A.
microphylla was purchased from a plant
shop in Khonkaen Province, Thailand. All
aquatic plants were gently rinsed with tap
water and kept in a plant nursery before use.
The environmental conditions in the plant
nursery were natural sunlight and actual air
temperature. The A. microphylla used in the
phytoremediation experiment was purchased
from the plant shop simultaneously. The
plant sample was gently rinsed and mixed
in a plastic basin before the experiment. The
plant sample was weighed and divided into
treatments.

Atrazine Phytotoxicity Testing

The experiment was performed under plant
nursery conditions with natural sunlight and
actual air temperature in November 2022 in
Thailand. The atrazine phytotoxicity testing
on the five aquatic plants was performed
under a completely randomized design with
one factor: atrazine concentration (0, 2.5, 5,
10, and 20 mg/L). The fresh weights of A4.
microphylla, C. demersum, E. crassipes, H.
verticillata, and S. cucullata at the beginning
of the experiment were 7, 30, 20, 30, and 40
g, respectively. Then, each aquatic plant was
cultured in a plastic cup containing 500 ml of
water contaminated with each concentration
of atrazine for five days. The experiment
was performed with five replicates. The
growth of each plant was observed at the end
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of the experiment, including fresh weight,
dry weight, chlorophyll a, chlorophyll b,
total chlorophyll, carotenoid, and proline
contents. The relative growth rate (RGR)
was calculated on a fresh weight basis, as
described in Equation 1 (Riaz et al., 2017).
The most tolerant aquatic plant was chosen
for the atrazine phytoremediation in the next
experiment.

Relative growth rate (RGR) =[In (W,)-
In (W])]/tz'tl [1]

where, W, = plant weight at the
beginning of the experiment; W, = plant
weight at the last day of the experiment; t,
= time at the beginning of the experiment;
t, = time at the last day of the experiment.

Atrazine Phytoremediation Experiment

The experiment was performed in Thailand
under plant nursery conditions with natural
sunlight and actual air temperature in
January 2023. The atrazine phytoremediation
experiment was performed under a factorial
completely random design (CRD) with 2
x 3 factors. The first factor was atrazine
concentration (0 and 25 mg/L), and the
second factor was the application of different
plant growth regulators, indole butyric
acid, gibberellic acid, salicylic acid, and
6-benzyladenine, at concentrations of 0, 1,
and 10 mg/L. Atrazine-contaminated water
was prepared by dissolving atrazine powder
in tap water to give the final concentration of
atrazine of 25 mg/L, and non-contaminated
water served as a control. Indole butyric
acid (Fluka, China), gibberellic acid (Sigma-

Aldrich, USA), salicylic acid (Sigma-
Aldrich, USA), and 6-benzyladenine
(HiMedia Laboratories Pvt Ltd, India) were
added separately to atrazine-contaminated
water and non-contaminated water to give
final concentrations for each plant growth
regulator of 0, 1, and 10 mg/L. Then, 7 g
of A. microphylla was cultured in atrazine-
contaminated and non-contaminated
water for five days. The experiment
was performed with six replicates. The
growth of 4. microphylla and atrazine
remaining in the water was observed. The
growth of A. microphylla was observed by
fresh weight, dry weight, chlorophyll a,
chlorophyll b, total chlorophyll, carotenoid,
proline, phenolic compound, and flavonoid
compound contents. The RGR was also
calculated on a fresh weight basis, as in
Equation 1.

Atrazine Extraction and Analysis

The atrazine remaining in the water from
each treatment was determined by sending
it for analysis at the Central Laboratory
(Thailand) Co. Ltd. (Khon Kaen branch), and
each treatment was analyzed in triplicate.
Atrazine was extracted and analyzed using
the EPA5S08 method (Munch, 1995). Briefly,
500 ml of the water sample was mixed with
100 ml of dichloromethane (RCI Labscan
Ltd., Thailand). The mixture was shaken
in a separation funnel for 2 min and left
for 10 min to separate into two layers. The
dichloromethane phase was filtered through
sodium sulfate (J. T. Baker, USA), and
the water phase was further extracted two
more times with dichloromethane using
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the previously described method. Then, the
dichloromethane phase of each extraction
was combined, and the dichloromethane
extract was dried with a rotary evaporator
(EYELA, model EVC2000, Japan). The
extract was redissolved with sodium acetate
solution (RCI Labscan Ltd., Thailand) and
mixed for 15 s with a vortex mixer. The
extract of 1 ml was transferred into the vial,
and the atrazine in the extract was analyzed.

The atrazine concentrations in the
extracts and standards were measured using
a gas chromatography-mass spectrometric
detector (Model 6890 Network GC System,
Agilent Technologies, China), and the
separation was achieved using an HP-
SMS column (0.25 nm x 250 pm x 30 m,
Agilent J&W, China). The sample volume
injected into the column was 2 pl under
splitless conditions. The oven temperature
was 80°C, followed by a linear increase
of 10°C per min to 200°C and held for 2
min. The temperature was increased from
200 to 230°C at 10°C per minute and held
for 5 min. The internal quality control
for atrazine analysis was reported as the
percentage of atrazine recovery. It was
performed by spiking 10 pg/L of atrazine
into the clean water and extracting it with
the same procedure as for the atrazine
extraction of the samples. The percentage
of atrazine recovery was 100%. The relative
percent difference RPD was calculated from
duplicates of the sample, with each being
10% of the sample, and the percentage of
RPD was less than 20%. The calibration
curve was generated from 3—5 points of
known atrazine concentration. The reagent

blank was analyzed for atrazine, and atrazine
was not detected. The limit of detection
(LOD) and the limit of quantitation (LOQ)
were also included. The detection limit was
10 pg/L, and the quantification limit was
100 pg/L.

Proline Content

The proline content in the plant biomass
was determined according to the methods
described by Abraham et al. (2010) and
Bates et al. (1973). For this, 300 mg of fresh
plant material was grounded in 5 ml of 3%
(w/v) sulphosalicylic acid (Loba Chemie Pvt
Ltd, India) in liquid nitrogen, and the sample
was centrifuged at 5,120 x g for 15 min.
Next, 2 ml of the supernatant was transferred
and mixed with 2 ml of glacial acetic acid
(QRE&c, New Zealand) and 2 ml of acid
ninhydrin (Kemaus, Australia). Then, the
mixture was incubated at 100°C for 1 hr. The
reaction in an ice bath was terminated for
10 min. Afterwards, 4 ml of toluene (Fisher
Chemical, United Kingdom) was added and
mixed with a vortex mixer for 20 min. The
solution was left to separate into two layers
before the toluene phase with a red color was
transferred to determine the absorbance with
a spectrophotometer (EMCLAB, Germany)
at a wavelength of 520 nm. The amount of
proline was calculated using a reference
standard curve of L-proline (Sigma-Aldrich,
USA) solution.

Chlorophyll and Carotenoid Contents

Chlorophyll and carotenoid contents were
determined according to the methods
described in Lichtenthaler (1987) as well
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as Sardoei and Rahbarian (2014). For this,
200 mg of fresh plant material was ground
in acetone (AnaPure, New Zealand). Then,
the mixture was centrifuged at 1,280 x g for
5 min. The supernatant was then transferred
into a new tube, and the volume with acetone
was adjusted to 15 ml. The absorbance
was determined with a spectrophotometer
(EMCLAB, Germany) at 662, 647, and 470
nm wavelengths. Then, the chlorophyll «a
[2], chlorophyll 4 [3], total chlorophyll [4],
and carotenoid [5] contents were calculated
using these equations:

Chlorophyll a = (12.25 x A662) - (2.79
X A647) (2]

Chlorophyll = (21.50 x A647) - (5.10
X A662) (3]

Total chlorophyll = Chlorophyll a +
Chlorophyll b [4]

Carotenoids = (1000 x A470) - (1.82 x
Chlorophyll @) - (85.02 x Chlorophyll
b)/198 [5]

Phenolic and Flavonoid Contents

The crude extract was prepared using
methods adapted from Kumari and Pandey-
Rai (2018). For this, 100 mg of the dry plant
material was grounded to a fine powder and
then extracted with 30 ml of 90% ethanol
(QRéc, New Zealand) and shaken at 150
rpm for 24 hr. The plant’s fine powder
was macerated for six days and shaken
occasionally daily. The fine powder was
filtered through filter paper (Whatman No.
1) to give the crude extract, and the fine
powder was repeatedly extracted according

to the method described previously one
further time. Then, the crude extracts were
combined, and the volume was reduced
with a rotary evaporator (Buchi Syncore,
Switzerland).

The total phenolic content was
investigated using the Folin-Ciocalteu
method, as described in Lertcanawanichakul
etal. (2019). For this, 50 pl of crude extract
was mixed with 25 pl of 10% (v/v) Folin-
Ciocalteu reagent (Merck, USA), 50 ul of
7.5% sodium carbonate (Ajax FineChem
Pyt Ltd, New Zealand), and 50 pl of
reverse osmosis water, mixed thoroughly
and was allowed to react at 45°C for 45
min. The absorbance was determined with
a microplate reader (BMG LABTECH,
SPECTROstar®*Nano, Germany) at the
wavelength of 765 nm. The total phenolic
compounds in the sample were calculated
using a gallic acid (Sigma-Aldrich, China)
standard curve.

The total flavonoid content was
investigated using the aluminum chloride
colorimetric assay described in Phonprapai
and Oontawee (2019). For this, 80 pl of
the crude extract was mixed with 50 pl
of 2% (w/v) aluminum chloride (Ajax
FineChem Pyt Ltd, New Zealand) and
100 pl of 10% (v/v) ethanol (QRé&c, New
Zealand) and allowed to react under dark
conditions for 30 min. The absorbance
was determined with a microplate reader
(BMG LABTECH, SPECTROstar*Nano,
Germany) at a wavelength of 425 nm. The
total flavonoid compound in the sample
was calculated using a quercetin (Sigma-
Aldrich, China) standard curve.
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Statistical Analysis

One-way and two-way analysis of variance
(ANOVA) were used to analyze the
phytotoxicity and plant growth regulator
experiments via Microsoft Excel 2019,
respectively. The least square difference
(LSD) was used for pairwise comparison.

RESULTS AND DISCUSSION

Growth of Aquatic Plants under Various
Concentrations of Atrazine

Aquatic plants are a suitable choice to
be used as atrazine phytoremediators in
aquatic environments because aquatic plants
naturally grow in the water, have contact
with the contaminant directly, and can
adapt to aquatic environmental conditions
(Sood et al., 2012). The results in this
study revealed that atrazine concentrations
ranging from 2.5-20 mg/L exerted toxicity
to all aquatic plants used in this study when
considering the dry weight of the aquatic
plants. The dry weights of A. microphylla,
C. demersum, E. crassipes, H. verticillate,
and S. cucullata decreased to 56.9-90.5%
of the plants in non-contaminated water
when atrazine concentration increased
to 20 mg/L, the most toxic concentration
(Table 1). In addition, the relative growth
rate of all plants decreased significantly
with increasing concentrations of atrazine
(P<0.05) (Table 1). The reduction in the dry
weight of the five aquatic plants was related
to the decrease in the total chlorophyll
content in the biomass of the aquatic plants
(Table 1). The chlorophyll contents of A.
microphylla, C. demersum, E. crassipes,
H. verticillata, and S. cucullata grown in

non-contaminated water were higher than
atrazine-contaminated water (Table 1). The
chlorophyll contents were decreased in A.
microphylla, H. verticillate, and S. cucullata
when the atrazine concentration was over
2.5 mg/L and decreases in the chlorophyll
contents were observed in C. demersum and
E. crassipes when the atrazine concentration
was over 5 mg/L (Table 1). In general, the
total chlorophyll content usually decreased
in proportion to the increase in the atrazine
concentration (Phewnil et al., 2012), which
was also observed in all aquatic plants used
in this study. The chlorophyll content in
A. microphylla did not decrease further
when the atrazine concentration increased
from 5 to 20 mg/L. The total chlorophyll
content in 4. microphylla grown under
different concentrations of atrazine did
not significantly differ from each other
(P>0.05). The reductions in the chlorophyll
content are a sign of atrazine toxicity
because the toxic effect of atrazine was to
inhibit photosystem II in plants (Salem &
El-Sobki, 2021; Yang & Zhang, 2020). If
protein and photosynthetic pigment in the
plant photosystem are destroyed, the ability
to fix carbon and plant growth will decrease
(Yang & Zhang, 2020). Thus, the loss of
chlorophyll content from atrazine toxicity
results in photosynthesis inhibition, which
can decrease plant biomass (Phewnil et al.,
2012; Yang & Zhang, 2020). Phytotoxic
effects from atrazine have been previously
reported; for example, 2.5 mg/L of atrazine
inhibited growth, decreased the fresh
weight and dry weight, and decreased the
chlorophyll content in Lemna perpusilla
Torr. after seven days of cultivation (Phewnil
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etal., 2012). Gao et al. (2011) also reported
that 10 pg/L of atrazine decreased the
fresh weight and chlorophyll content in
Zostera marina L., and 86.67% of plants
died after exposure to 100 pg/L of atrazine.
Decreasing weight and transpiration rate of
T. latifolia were observed when plants were
exposed to 20 ug/L of atrazine (Pérez et al.,
2022). Exposure to atrazine at 2 nmol/L for
two days decreased the chlorophyll content
of Phaeodactylum tricornutum Pt-1 to only
37.5% compared to the control without
atrazine exposure (Yang & Zhang, 2020).
Yang et al. (2019) also reported that the
genes encoding for proteins in photosystem
Il (PsbO, PsbP, PsbU, PsbQ, and Psb27)
and genes encoding for electron transport
in Phaeodactylum tricornutum Pt-1 were
repressed under atrazine exposure (Yang
et al., 2019). Another impact of atrazine
on plants is tissue necrosis (Phewnil et
al., 2012), but it was not observed in 4.
microphylla, C. demersum, E. crassipes, H.
verticillata, and S. cucullata in this work.
None of the aquatic plants showed any
phytotoxic symptoms, and the plants looked
green when observed by the naked eye.
The carotenoid contents in plant
biomass of A. microphylla and S. cucullata
grown in atrazine-contaminated water did
not significantly differ from that grown in
non-contaminated water (P>0.05) (Table
1). It indicated that atrazine was not toxic
to both plants. Meanwhile, a decrease in
the carotenoid content was detected in C.
demersum and E. crassipes after atrazine
exposure (Table 1). The fluctuation in
carotenoid content is a sign of plant response
to abiotic stress because carotenoids can act

as an antioxidant molecule to neutralize the
free radicals produced from photosynthetic
reactions in plants (Kopsell et al., 2009).
Thus, increasing the carotenoid content
is a plant response mechanism to abiotic
stress found in H. verticillata (Table 1).
The decrease in the carotenoid content
in C. demersum L. and E. crassipes may
be because these plants used carotenoid
molecules to neutralize the toxic effect of the
free radicals produced during plant growth
under atrazine contamination. Oxidative
stress is a sign of toxicity in plants grown
under atrazine exposure (Singh et al.,
2018). Plants usually overcome oxidative
stress by enzymatic and non-enzymatic
mechanisms (Singh et al., 2018), and
the production of carotenoids is a non-
enzymatic mechanism plants use to detoxify
the free radicals (Kumari & Pandey-Rai,
2018; Pérez-Galve et al., 2020). The atrazine
tolerance in A. microphylla and the proline
content in aquatic plants was confirmed
again because the proline content in 4.
microphylla was constant between plants
grown under atrazine contamination and
non-contamination conditions. However,
the proline content in C. demersum, E.
crassipes, H. verticillata, and S. cucullata
increased when the atrazine concentration
was increased. Increasing the proline
content in the plant is another plant response
mechanism to oxidative stress (Bibi et al.,
2019) because proline can also act as an
antioxidant molecule in plants (Din et al.,
2020). Increased proline content has been
reported in maize seedlings exposed to
atrazine at 500 and 1,000 mg/L (Bibi et al.,
2019).
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Growth of A. microphylla under Plant
Growth Regulator Application

Based on the dry weight, total chlorophyll,
carotenoid, and proline contents of the
tested aquatic plants described above, 4.
microphylla, the model aquatic plant, was
selected for atrazine remediation in the
next experiment because it is the most
atrazine-tolerant plant of those tested. When
observed by the naked eye, A. microphylla
showed no sign of phytotoxicity at 20 mg/L
of atrazine (Figure 1). Another suitable
characteristic of Azolla for phytoremediation
is its rapid growth. It is a free-floating
plant that would be easy to manage after
the phytoremediation process. Aquatic
ferns have been reported to be used in the
phytoremediation of various pollutants,
namely heavy metals and pesticides (Sood
et al., 2012). The atrazine remediation
experiment was performed by growing 4.
microphylla in 25 mg/L of atrazine and
using a plant growth regulator (indole
butyric acid, gibberellin, salicylic acid, or
6-benzyladenine) to promote the growth of
A. microphylla under atrazine contamination.
There was a significant interaction between
atrazine concentration and different types
of plant growth regulators for all plant traits
(Table 2). In atrazine-contaminated water,
only 10 mg/L gibberellic acid, 1 mg/L indole
butyric acid, and 1 mg/L 6-benzyladenine
could increase the dry weight of 4.
microphylla significantly compared with
plants exposed to atrazine without any
plant growth regulator application. All
plant growth regulators could significantly
increase the relative growth rate in non-

contaminated water. However, only 10 mg/L
6-benzyladenine, 1 mg/L indole butyric
acid, 1-10 mg/L salicylic acid, and 10 mg/L
gibberellic acids could increase the relative
growth rate of 4. microphylla in atrazine-
contaminated water significantly (Table 2).
Without a plant growth regulator, the results
revealed that 25 mg/L atrazine decreased
the total chlorophyll and carotenoid content
and increased the proline content of A.
microphylla (Table 2). The proline content
of A. microphylla grown under atrazine
contamination was higher than that grown
under the non-contaminated condition. It
was evident in the response of 4. microphylla
grown under 25 mg/L of atrazine, whereas
proline acts as an antioxidant molecule that
plants synthase in response to atrazine stress
(Bibi et al., 2019). In addition, the phenolic
and flavonoid contents in A. microphylla
grown under atrazine-contaminated
water without the plant growth regulator
application did not significantly differ
(P>0.05) from that with the plant growth
regulator (6-benzyladenine, gibberellic
acid, indole butyric acid, and salicylic
acid) application (Table 2). Likewise,
phenolic and flavonoid compounds are

_|ATZ10 mg/L.  ATZ 20 mg/L|

ay

- ATZ0mg/L ATZ2.5mg/L ATZ 5 mg/L

mglL ATZ20 mL A B
Figure 1. Growth of Azolla microphylla grown under

atrazine-contaminated water in a concentration range

from 0-20 mg/L for five days
Note. ATZ = Atrazine
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secondary metabolites that protect plants
from oxidative stress in plants (Kiani et al.,
2021). Plant homeostasis between reactive
oxygen species and phenolic or flavonoid
compounds was a general mechanism of
plant adaptation to abiotic stress (Kiani et al.,
2021). The unchanged amount of phenolic
and flavonoid compounds in A. microphylla
may be due to the tolerant nature of the plant
to atrazine. Thus, increasing the synthesis
of phenolic and flavonoid compounds in
response to atrazine stress was unnecessary
for A. microphylla in this study. The
exogenous plant growth regulator used did
not affect the amount of both compounds;
it may be due to the plant growth regulator
not inducing the synthesis of phenolic and
flavonoid compounds. Meanwhile, the
previous research by Kumari and Pandey-
Rai (2018) reported that exogenous plant
growth regulators could induce the synthesis
of phenolic and flavonoid compounds in
plants grown under abiotic stress.

The plant growth regulators
(6-benzyleadenine, indole butyric acid,
salicylic acid, and gibberellic acid) used in
this study did not improve 4. microphylla
growth under atrazine contamination.
However, 10 mg/L of 6-benzyladenine and
10 mg/L of gibberellic acid tended to increase
the dry weight, total chlorophyll content, and
carotenoid content in 4. microphylla grown
under atrazine contamination to a greater
extent than the other plant growth regulators
(Table 2). Both plant growth regulators
were used to stimulate growth, conserve
chlorophyll content, and alleviate the toxic
effects of abiotic stress on plants by various

mechanisms. For example, gibberellic acid
at 100 ppm has increased the weight of
wheat grown under heat stress. However,
it did not affect the level of antioxidant
enzymes, lipid peroxidation, and membrane
stability (Nagar et al., 2021). Pre-treatment
of wheat seeds with 0.01-1.0 uM gibberellic
acid alleviated Ni toxicity by increasing
the chlorophyll content and decreasing the
percentage of electrolyte leakage (Siddiqui
et al., 2011). The 6-benzyladenine at 10
uM alleviated the abiotic stress from salt
in Solanum melongena Mill. by increasing
the chlorophyll content, decreasing the
superoxide anion production, decreasing
the malondialdehyde content, and increasing
the antioxidant enzymes and proline content
(Wu et al., 2014). Moreover, 0.5 mM of
6-benzyleadenine also promoted the shoot
and root growth, reduced the superoxide
anion and hydrogen peroxide accumulation,
reduced the malondialdehyde content, and
increased the antioxidant enzymes in a maize
waterlogging sensitive strain (SY-XTI)
grown under waterlogging conditions (J.
Wang et al., 2021). However, promoting the
growth of 4. microphylla by salicylic acid
and indole butyric acid was not observed
in this study. However, both plant growth
regulators have been used to stimulate the
growth and tolerance of plants under heavy
metal stress with a similar mechanism as
other plant growth regulators (Kumari &
Pandey-Rai, 2018; Siposova et al., 2021).
The concentration of the plant growth
regulator also influenced the response of
plants (Siposova et al., 2021). This study
found that only ten mg/L of 6-benzyladenine
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and gibberellic acid stimulated the growth
of A. microphylla. However, 1 mg/L of both
plant growth regulators did not increase
the dry weight, total chlorophyll content,
and carotenoid content in A. microphylla.
The findings in this study correspond with
the study of Siposova et al. (2021), who
revealed that indole butyric acid at 10° M
promoted the growth of maize under soil
contaminated with 50 mM of cadmium
nitrate, while 107 M of indole butyric
acid inhibited the growth of maize under
cadmium nitrate contamination (Siposova
etal., 2021).

Removal of Atrazine by A. microphylla

Cultivation of A. microphylla was unable to
remove atrazine from contaminated water
because the amount of atrazine remaining in
the water after five days of A. microphylla
cultivation was 22.67 mg/L, which was not
significantly different from the amount of
atrazine remaining in the unplanted control

Table 3

(25.33 mg/L). The initial concentration of
tested atrazine was 25 mg/L (Table 3). The
application of the plant growth regulators
(6-benzyleadenine, indole butyric acid,
salicylic acid, and gibberellic acid) did
not improve the ability of 4. microphylla
to remove atrazine from the contaminated
water (Table 3). The atrazine remaining in
the water was around 21-26 mg/L when
the plant growth regulator was applied,
and the amount of atrazine remaining
was not significantly different from the
treatment without the plant growth regulator
application (P>0.05). However, using 10
mg/L of 6-benzyladenine and 1 mg/L of
indole butyric acid stimulates the removal
of atrazine by A. microphylla compared to
using both concentrations of salicylic acid.
However, the amount of atrazine remaining
in the water when using each type of plant
growth regulator did not significantly differ
from that without the plant growth regulator
application (P>0.05). Based on our results,

Atrazine remaining in water after cultivation of Azolla microphylla with various plant growth regulators for

five days (data shown as mean + SE)

Treatment Atrazine (mg/L)
Indole butyric acid (1 mg/L) 21.50+£1.04b
Indole butyric acid (10 mg/L) 26.00+1.32a

Gibberellic acid (1 mg/L)
Gibberellic acid (10 mg/L)
Salicylic acid (1 mg/L)
Salicylic acid (10 mg/L)
6-benzyladenine (1 mg/L)
6-benzyladenine (10 mg/L)
No plant growth regulator
Non-cultivation of A. microphylla

23.92+£1.92 ab
22.83+£0.17 ab
2550+ 1.04a
25.42+0.79a
22.17+0.73 ab
21.00+0.29b
22.67+0.17 ab
2533+2.13a

Note. Different lowercase letters show significant differences (P<0.05) between plant growth regulators

within the same atrazine concentration
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it was difficult to indicate the possible
mechanisms of atrazine removal by 4.
microphylla because the amount of atrazine
in contaminated water did not decrease
significantly (P>0.05) between planting
and not planting in atrazine-contaminated
water. It suggests that 4. microphylla could
tolerate atrazine only. However, it could not
remove atrazine from contaminated water.
The findings in this study contradicted the
previous studies by other researchers. For
example, aquatic macrophytes, namely /.
pseudacorus, L. salicaria, and A. calamus,
could degrade atrazine by 75.6, 65.5,
and 61.8%, respectively, when cultivated
under hydroponic conditions for 20 days
with an initial atrazine concentration of
4 mg/L (Q. Wang et al., 2012). The main
mechanism of atrazine removal was the
activity of plants to degrade atrazine and
other mechanisms to remove atrazine,
such as microbial degradation and abiotic
degradation (Q. Wang et al., 2012). The
reason why 4. microphylla could not
improve the atrazine removal from water
in this study, possibly due to limited
atrazine-degrading microorganisms found
in the water used. Tap water was used
to prepare the atrazine-contaminated
water in this study, despite heterotrophic
bacteria being a common microorganism
found in tap water (Harnroongroj et al.,
2012). Atrazine degradation activity was
generally poor under sterilized conditions
(Q. Wang et al., 2012). Moreover, the
period of A. microphylla cultivation in this
study was short, at only five days for this
experiment. Azolla microphylla and related

microorganisms might not have adapted to
degrade atrazine during the experiment. The
study by Q. Wang et al. (2012) reported that
1. pseudacorus, L. salicaria, and A. calamus
took 20 days for atrazine removal. However,
the period for atrazine removal varied
depending on the plant species. Marecik
et al. (2021) reported that cultivation of 4.
calamus under hydroponic conditions for
seven days could reduce atrazine by 57%
(the initial concentration of atrazine was
3.5 g/L) and 97% of atrazine was removed
after extending the time for 4. calamus
to 21 days. Meanwhile, 7. latifolia took
50 days for 90% atrazine removal under
hydroponic conditions (Marecik et al.,
2021). Based on the cultivation of aquatic
plants in other studies, it can be suggested
that the cultivation period of 4. microphylla
was extended for more than five days; the
atrazine may be removed.

Despite there being no atrazine removal
by 4. microphylla in this study, however, the
mechanism for pollutant removal in genus
Azolla in water is often by accumulation or
phytoextraction, such as for cadmium (Rai,
2008) and methyl violet 2B dye (Kooh et al.,
2018). Applying plant growth regulators in
this study did not increase the plant capacity
to remove atrazine. It may be due to the
concentration of the plant growth regulator
being suitable only to stimulate plant growth
but not for increased atrazine removal. In
addition, some plant growth regulators, such
as cytokinin and salicylic acid, have been
reported to decrease pollutant accumulation
in some plants and algae. For example,
cytokinin decreased Pb accumulation in
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the algae cells of Acutodesmus obliquus
(Piotrowska-Niczyporuk et al., 2018).
Salicylic acid application to hemp grown
in cadmium-contaminated sand decreased
the Cd uptake into plants (Shi et al., 2009).
If the atrazine-degrading microorganisms
were insufficient, it is possible that some
plant growth regulators that supported plant-
microbe interactions were not working well.
Thus, the use of 4. microphylla in atrazine
phytoremediation in the future should be
done with the augmentation of atrazine-
degrading microorganisms combined
with the cultivation of A. microphylla in
contaminated water.

CONCLUSION

Azolla microphylla was an atrazine-tolerant
plant, but it could not remove atrazine
when cultivated in contaminated water
alone. About 22.67 mg/L of atrazine was
remained in water at the end of experiment.
Applying salicylic and indole butyric
acid did not promote the growth and
phytoremediation by A. microphylla grown
in atrazine-contaminated water. Gibberellic
acid and 6-benzyladenine were suitable for
stimulating the growth of 4. microphylla
under atrazine contamination. Percentage of
dry weight and total chlorophyll content of A.
microphylla were 103 and 156.09 ug/g fresh
weight when recieving 10 mg/I of giberellic
acid and 6-benzyladenine, respectively.
However, the suitable concentration should
be determined when using both plant growth
regulators. The application of A. microphylla
and atrazine-degrading microorganisms may
be interesting in aiding atrazine degradation.

This assumption should be investigated in
future work.
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